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Algebra as we encounter it in Stifel (1544) or Descartes (1637) looks wholly 
different from what we know from al-Khwārizmī and Fibonacci. Indeed, early 
Modern algebra did not build on these: its foundation was the algebra of the 
Italian Abbacus school. The paper follows the development of this tradition from 
1307 onward, in particular the appearance of abbreviations, the naming of powers 
and roots, formal calculations, schemes, and the solution of higher-degree 
equations. 
THE TRANSFORMATION 
Ancient Babylonian and Ancient Egyptian mathematics were powerful calculational 
tools for the solution of scribal tasks - accounting, planning of resources, 
measurement of land; they were developed and taught for that purpose. What else 
was achieved by them – e.g., the impressive feats of Old Babylonian “Algebra” – was 
derivative and secondary to that purpose. 
Classical Ancient mathematics had many components:1 

• “Practical mathematics” of the scribal kind. 
• “Liberal-Arts”-mathematics, the kind of mathematics which a well-bred 

person ought to know about – which was generally very little. 
• What is mostly thought of as “Greek mathematics”, the theoretical geometry 

of Euclid, Archimedes, Apollonios etc. 
The latter type (though only a minor segment of it) turned out to be a powerful tool in 
Ptolemaic astronomy and in theoretical static and optics; Hero was also able to apply 
a small part to mensuration of the “scribal” type.2 However, this was not the main 
purpose for which it was created, and until the late Renaissance it did not 
significantly broaden the range of applications it could serve. 
Modern mathematics as it has unfolded since around 1600 has turned out to be an 
immensely more powerful tool for an ever-increasing range of practical objectives. 
What enabled it to go beyond the limits of ancient theoretical mathematics was the 
introduction of symbolic, formal calculation - first in algebra, then in analysis 
infinitorum, then in the calculus of probabilities and theoretical statistics, etc. 
                                                            
1 See [Cuomo 2001]. The occasional lack of precision of this book does not prevent it from being an excellent introduction 
to the diversity of Classical mathematics. 
2 A little bit, though even less, also crept into for instance Geometrica and Stereometrica, pseudo-Heronian compilations 
closer to scribal traditions. 
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Algebra was thus the decisive stimulus – yet not the kind of algebra which Europe 
had known from al-Khwārizmī and Fibonacci. This kind, indeed, could never have 
transformed mathematics as a whole. What was the difference? And what had 
happened to algebra? 
NESSELMANN'S CATEGORIES, AN ONLY PARTIAL ANSWER 
A first approach to the difference would make use of the three-stage scheme which 
Nesselmann proposed in his Algebra der Griechen [1842: 302]. A “first and lowest” 
stage in the development of algebra should be that of “rhetorical algebra”, which 
expresses everything in full words.3 Nesselmann's second stage is “syncopated 
algebra”; here, standard abbreviations are used for certain recurrent concepts and 
operations, even though “its exposition remains essentially rhetorical” – that is, the 
whole exposition can be expanded into full words. The third stage is “symbolic 
algebra”; here, “all forms and operations that appear are represented in a fully 
developed language of signs that is completely independent of the oral exposition”. 
It is obvious that al-Khwārizmī's and Fibonacci's algebras are rhetorical, and no less 
obvious that Descartes' algebra is symbolic. However, Nesselmann's notion of 
symbolic algebra is broader than we might at first expect. He does indeed take 
European mid-17th-century algebra to be symbolic, but also counts the Indian use of 
schemes to the same category. He shows no examples of this, but we may borrow one 
from Bhāskara II as transcribed in [Datta & Singh 1962: II, 32] 

yâ gha 8  yâ va 4  kâ vayâ.bhâ 10 
yâ gha 4  yâ va 0  kâ vayâ.bhâ 12 

corresponding to our 8x3+4x2+10y2x = 4x3+0x2+12y2x, which is excellent for reducing 
the equation and may also be an adequate means to express a resolving algorithm 
once such an algorithm is known; but it does not allow, for instance, that yâ (the first 
unknown) to the third power be replaced by P gha, where P is itself a polynomial. In 
other words, the notation does not allow embedding, the replacement of a simple 
mathematical object by a different, complex object – the essential feature, if any 
exists, of the change which affected mathematics so thoroughly after 1600. 
As we shall see, schematic notations also developed in European (and Maghreb) 
algebra, but they were eventually abandoned as a main means of expression. On the 
other hand, elementary embedding began independently of the use of abbreviations. 
Rather than stages, we should therefore speak of aspects of the expression of 
algebraic thought, aspects which only to some extent are sequentially ordered. 
AL-KHWĀRIZMĪ'S ALGEBRA 
Al-Khwārizmī's algebra was purely rhetorical. It dealt with a quantity called māl 
(literally a “possession” or “amount of money”, becoming census in Latin), its square 
root (jidhr) and number (treated as a number of dirham, becoming dragmas in Latin). 
                                                            
3 Here and in what follows, all translations into English are mine if nothing else is indicated. 
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Already in al-Khwārizmī's treatise, however, the māl is explained as a number 
multiplied by itself, and the jidhr is identified with the šay’/“thing”.4 These 
terminological complications are traces of a complex prehistory, which does not 
concern us here, and which can anyhow only be reconstructed hypothetically. 
Al-Khwārizmī's algebra proper5 contains rules for solving reduced first- and second-
degree problems (“cases” in what follows), geometric proofs for the correctness of the 
rules for the mixed cases (“possession and roots are made equal to number” etc.), rules 
and proofs for the calculation with square roots and binomials, and examples showing 
how to reduce other problems. The rule for the first mixed case runs as follows:6 

But possession and roots that are made equal to a number is as if you say, “A possession and 
ten roots are made equal to thirty-nine dragmas”. The meaning of which is: from which 
possession, to which is added ten of its roots, is aggregated a total which is thirty-nine? The 
rule of which is that you halve the roots,7 which in this question are five. Then multiply them 
by themselves, and from them 25 are made. To which add thirty-nine, and they will be sixty-
four. Whose roots you take, which is eight. Then subtract from it half of the roots, which is 
five. There thus remain three, which is the root of the possession. And the possession is nine. 

In modern symbols: if y+10√y = 39 (or x2+10x = 39), then √y = 2
10

2
1039 −)2(+ . 

Two geometric proofs are given for the correctness of the rule. The first [Hughes 
1986: 236f] runs as follows: 

A possession and ten roots are made equal to thirty-nine 
dragmas. Make therefore for it a quadratic surface with unknown 
sides, which is the possession which we want to know together 
with its sides. Let the surface be AB. But each of its sides is its 
root. And each of its sides, when multiplied by a number, then 
the number which is aggregated from that is the number of roots 
of which each is as the root of this surface. Since it was thus said 
that there were ten roots with the possession, let us take a fourth 
of ten, which is two and a half. And let us make for each fourth a 
surface together with one of the sides of the surface. With the first surface, which is the 
surface AB, there will thus be four equal surfaces, the length of each of which is equal to 
the root of AB and the width two and a half. Which are the surfaces G, H, T and K. From 
the root of a surface with equal and also unknown sides is lacking that which is 
diminished in the four corners, that is, from each of the corners is lacking the 
multiplication of two and a half by two and a half. What is needed in numbers for the 
quadratic surface to be completed is thus four times two and a half multiplied by itself. 
And from the sum of all this, twenty-five is aggregated. [...]. 

                                                            
4 I shall italicize the word “thing” when it is used as an algebraic unknown; below, when discussing the Italian material, 
also other powers and “number” when occurring as “power 0”. 
5 This leaves out the chapters on the rule of three, on geometry and on inheritance calculation. The twelfth-century Latin 
translations also left out the latter two. 
6 I translate (as literally as possible) from Gherardo of Cremona's Latin translation [ed. Hughes 1986: 234f], arguably a 
better witness of the original text than the extant Arabic manuscripts – see [Høyrup 1998] and [Rashed 2007: 86–89]. 
7 That is, the number of roots – in our terms, their coefficient. 
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In consequence, the argument continues, the area of the completed square DE is 
39+25 = 64, and its side 8. Subtracting 2⋅2½ = 5 = 10/2 we find that the side of AB is 
8–5 = 3. 
Al-Khwārizmī's illustrates the use of the technique (here the rule for “possession and 
number is made equal to roots”) by this example: 

 “Divide ten in two parts, and multiply each of them by itself, and aggregate them. And 
it amounts to fifty-eight”. Whose rule is that you multiply ten minus a thing by itself,8 
and hundred and a possession minus twenty things results. Then multiply a thing by 
itself, and it will be a possession. Then aggregate them, and they will be one hundred, 
known, and two possessions minus twenty things, which are made equal to fifty-eight. 
Restore then one hundred and two possessions with the things that were taken away, 
and add them to fifty-eight. And you say: “One hundred, and two possessions, are made 
equal to fifty-eight and twenty things”. Reduce it therefore to one possession. You 
therefore say: “Fifty and a possession are made equal to twenty-nine and ten things”. 
Oppose hence by those, which means that you throw twenty-nine out from fifty. There 
thus remains twenty-one and a possession, which is made equal to ten things. Hence 
halve the roots, and five result. [...]. 

In symbols (replacing the thing by x): Given is 10 = x+(10–x) and (10–x)2+x2 = 58. 
Therefore, stepwise, 100+x2–20x+x2 = 100+2x2–20x = 58; 100+2x2 = 58+20x; 50+x2 = 
29+10x; and finally 21+x2 = 5x, the reduced equation for which we have a rule. As far 
as al-Khwārizmī's technique goes, it thus agrees with what we would do; but as we see, 
the composite expression (10–x)2 has to be expanded before it can be inserted into the 
equation, there is room for no other way to operate with it.9 
THE BEGINNING OF ABBACUS ALGEBRA 
In 1202, with revision in 1228, Leonardo Fibonacci wrote his Liber abbaci, which 
contains a final section on algebra. As I have argued elsewhere [Høyrup 2005], 
Fibonacci must have known (and drawn part of his material from) an environment 
somewhat similar to the Abbacus school as we know it from Italy from the later 13th 
century onward (see imminently), located probably in the Western Islamic region (the 
Maghreb and Islamic Spain), Catalonia and Provence. However, his algebra is quite 
different from what we find in Italian Abbacus writings and close to al-Khwārizmī in 
style (though wider in range, being also influenced by Abū Kāmil). 
The earliest traces of the Abbacus school turn up in the sources around 1265. It was 
primarily frequented by merchant and artisan youth for c. two years (around the age 
of 11), who were taught the mathematics needed for commercial life: calculation with 
the Hindu-Arabic numerals; the rule of three; how to deal with the complicated 
metrological and monetary systems; alloying; partnership; simple and composite 
                                                            
8 The previous example – also of type “divided 10” – has already made the position that one part is represented by a thing, 
whence the other must be 10 minus 1 thing. 
9 Al-Khwārizmī thus would have had great troubles to make his reader follow the calculation (10–x)2+(10–x)x = (10–
x)⋅(10–x+x) = (10–x)⋅10 = 100–10x, so easy when symbols allow us to treat 10–x as a simple entity. 
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discount; the use of a “single false position”; and area computation. Smaller towns 
might employ a master, in towns like Florence and Venice private Abbacus schools 
could flourish. In both situations Abbacus masters had to compete, either for 
communal positions or for the enrolment of students. 
Algebra was not part of the school curriculum, but from the early 14th century it 
turns up (together with other techniques like the “double false position” that were too 
difficult for normal students) in a number of abbacus texts. Such matters may have 
been meant for the education of apprentices working also as assistants, but at least 
algebra functioned as a token of professional aptitude and therefore also enjoyed high 
prestige.  
The earliest extant abbacus book containing a presentation of algebra is Jacopo da 
Firenze's Tractatus algorismi, written in Montpellier in 1307, in Tuscan Italian in 
spite of its Latin title. 
It is not derived from Fibonacci's algebra, nor from the “scholarly” level of Arabic 
algebra – that of al-Khwārizmī, Abū Kāmil, al-Karaji and Ibn al-Bannā’ – but 
probably from a level integrated with commercial teaching. However, the total 
absence of Arabicisms shows that the direct source must have been located in a 
Romance-speaking region – the best guess appears to be a Catalan environment of 
Abbacus-school type.10 
Jacopo's algebra is also purely rhetorical, but it differs that of al-Khwārizmī in several 
ways: whereas the second power is referred to as censo (now with all connotations of 
money forgotten), the first power is never the “root” but invariably the cosa/thing, 
and the number term is always spoken of as numero, never as an amount of money.11 
Half of the examples (all for the first and second degree) also deal with (varied but 
invariably sham) commercial problems, which are almost absent from al-Khwārizmī 
and Fibonacci,12 and uses the rule of three as a tool in certain algebraic arguments. As 
if he were conscious of introducing a new field, Jacopo avoids all abbreviations of 
algebraic core terms (even though non-algebraic words are often abbreviated, as 
habitual in manuscripts from the epoch). 
Al-Khwārizmī only treats problems of the first and second degree. Problems of 
higher degree turn up in Abū Kāmil and Fibonacci but are not treated systematically. 
Jacopo instead gives rules for such basic “cases” of the third and fourth degree as are 
homogeneous or can be reduced to the second degree, forgetting only two 
biquadratics.13 Examples accompany rules for the first and second degree only. 

                                                            
10 For this and what follows about the beginning of abbacus algebra, see [Høyrup 2006] or [Høyrup 2007a: 147–182] 
11 Both roots and dragmas used in this way turn up (together with geometrical proofs) in a few 15th-century abbacus 
manuscripts of encyclopedic character, whose authors show explicit interest in the founding fathers of the field. But even in 
their case this pious service is isolated from their own use of algebra. 
12 Actually, they deal with only one type: A given amount of money is divided first among an unknown number (say, x) of 
persons, and afterwards between x+N persons (N given). The sum of or the difference between the shares in the two cases 
is also given. 
13 Since al-Karajī, such problems had been solved routinely and systematically in Arabic algebra. 
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We may look at the first and simplest of the two examples for the first-degree case, 
“things are equal to number”:14 

 make two parts of 10 for me, so that when the larger is divided by the smaller, 100 results 
from it. Do thus, posit that the larger part was a thing. Hence the smaller will be the 
remainder until 10, which will be 10 less a thing. And thus we have made two parts of 
ten, of which the larger is a thing, and the smaller is 10 less a thing. Now one shall divide 
the larger by the smaller, that is, a thing by 10 less a thing, from which shall result 100. 
And therefore one shall multiply 100 times 10 less a thing. It makes 1000 less 100 things, 
which equal one thing. [...]. 

This draws on the same cognitive resources as al-Khwārizmī's text (without the proofs). 

THE IMMEDIATE SUCCESSORS 
During the following decades, algebra turns up in a number of abbacus books, 
sometimes in more or less general expositions, sometimes as isolated problems. The 
most interesting early exposition is in Paolo Gherardi's abbacus treatise (Montpellier, 
1328).15 Most striking here is the appearance of irreducible third-degree cases, solved 
by means of false rules – glaringly false indeed for anybody understanding the matter.16 
These false rules survived for more than 200 years (they are still in Bento Fernandes' 
Tratado da arte de arismetica from 1555 [Silva 2006]). They probably served to outdo 
colleagues in the competition for positions and students; their survival is strong 
evidence that few abbacus teachers understood much of algebra. Whether Gherardi 
understood is doubtful; indirect evidence shows that he did not invent the wrong rules. 
Less conspicuous but also of importance is the earliest use of a diagram for a formal 
calculation (missing in the actual manuscript, which is a copy, but described 
unambiguously in the text) 

 . 
It turns up in a pure-number-version of the problem described in note 12, which we 
may translate 5+x

100
x

100  +  = 20. It implies an understanding of the operations (cross-
multiplication etc.) needed to add the formal fractions17 cosa 1

100  and   piu  cosa 51
100 . 

In a Trattato dell'alcibra amuchabile from c. 1365, we find such formal fractions 
written out repeatedly - for instance, in the same problem, 5

100100
 plus and thing aby      thing aby 

                              [ed. 
Simi 1994: 42], explained to be performed “in the mode of a fraction” and explained 

                                                            
14 [Høyrup 2007a: 304f]. 
15 The complete text is in [Arrighi 1987], the algebra chapter with English translation in [Van Egmond 1978]. 
16 For instance, the case “cubes equal to things and number”, solved according to the rule for “censi equal to things and 
number”. For the mathematically thoughtful this should imply that the cube is equal to the censo, and by division (another 
rule given by Gherardi) that the thing equals 1. Direct easy check was barred by the appearance of radicals in the solution. 
17 These are “formal” in the sense that the form of the fraction is taken not to express an actual broken number but the ratio 
between algebraic expressions. 
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in analogy with   + 6
24

4
24 . We are thus presented with a rudimentary example of 

symbolic operation (including embedding) without abbreviation.18 
The expression “by a thing and plus 5” (per una cosa e più 5) is mirrored elsewhere 
(p. 50) in a similar fraction, where the denominator is “by two things and less 6” (per 
due cose e meno 6). They show that the author operated with a notion of additive and 
subtractive numbers, and that a subtraction is understood as the addition of a 
subtractive number. We should not identify the subtractive numbers with negative 
numbers, since they cannot occur as results; but the idea was close at hand (and soon 
grasped). 
We also finds schemes for the multiplications of binomials (consisting of number and 
irrational root), for instance (p. 18) for (5+√20)⋅(5–√20): 

     5 and plus ℜ of 20 
     times 

     5 and less ℜ of 20 
Sometimes, crossing lines showing the cross-multiplication replace the word “times” 
(via) – or both occur. The same lines are used in earlier abbacus manuscripts when 
the multiplication of mixed numbers is shown. 
The Trattato dell'alcibra amuchabile copies Jacopo's algebra verbatim, but also has 
most of Gherardi's false solutions in a version which appears to predate Gherardi; all 
of this material must thus go back to before 1330 and hence precede Giovanni di 
Davizzo's algebra (from 1339, and known only from a fragment included in a manu-
script from 1424) and the Aliabraa argibra, written by one Dardi of Pisa in 1344. 
Though independent of Jacopo, Giovanni gives almost the same rules (and one false 
rule, almost fully illegible in the manuscript but not one of Gherardi's). However, he 
also gives correct examples for calculation with square roots and binomials consisting 
of rational numbers and roots – mostly roots of square numbers, but treated as if the 
roots were irrational, and not taking advantage of the possibility which this choice 
offers for checking (edition and translation of the relevant part in [Høyrup 2007c: 
479–481]). Even more striking, he teaches the multiplication of powers (which allows 
us to see how these are labelled) and the division of lower by higher powers. 
The powers are composed multiplicatively – the censo of cube is the fifth power, the 
cube of cube the sixth, etc. This is wholly traditional, both Diophantos and al-Karajī 
do the same. In Greek and Arabic, no linguistic problem inheres in this, but the Italian 
(and corresponding Latin) genitive construction soon became a challenge by 
suggesting embedding instead of multiplication: the cube of 2 is 8, and the cube of 8 
is 512 – but the cube of cube of 2 is 64! 

                                                            
18 The idea was borrowed from Maghreb mathematics – [Djebbar 2005: 93] shows in facsimile an equation in a manuscript 

containing a fraction t  ½
48 . 
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Giovanni did not see the problem, and made worse in his division of lower by higher 
powers; here the power –n is replaced by the nth root (by number if n = 1), and even 
roots are composed multiplicatively (“dividing number by cube of cube gives cube root 
of cube root”, etc.). Giovanni is likely to have invented this system himself – there are 
no traces of it except in writings which repeat it wholesale; such wholesale repetitions, 
on the other hand, circulate until Bento Fernandes. We may conclude, firstly, that the 
ambition to extend the reach of algebra (whether intellectual or career ambition we may 
leave aside) was not restricted to the production of false solutions; and secondly, that 
few Abbacus masters had the least need for higher roots, and that most of them 
therefore did not need to discover the problem. We may also observe that Giovanni's 
extension, a dead-end as it is, was guided by an intuitive idea that mathematics (but 
unfortunately the mathematics he already knew about) must be coherent.19 
Dardi's treatise is at a different level; anybody with some mathematical training who 
reads it will feel that here a genuine mathematician is speaking. What first strikes one is 
that he solves 194 cases correctly20 – a number he reaches by involving radicals (square 
and cube roots of numbers as well as algebraic powers). He also gives rules for solving 
four “irregular” cases of the third and fourth degree, rules which only hold under 
particular circumstances (as he points out), but which may still serve (namely in a 
competition, we may add). The rules had been guessed (apparently not by Dardi) 
through a change of unknown in homogeneous problems;21 deriving them requires a 
good understanding of the algebra of polynomials (see [Høyrup 2007b: 6f]); even 
Dardi's own elimination of radicals requires good insight. 
However, Dardi's work is interesting not only as evidence of level. He uses abbreviations 
consistently not only for radice (“root”, which I shall render  ℜ) but also for the thing and 
the censo – c and ç, respectively. At the same time, he uses the fraction model in a way 
which bars the development of formal calculations – seeing /4 in 3/4 as a name (“fourths”) 
and not as an operation, he generalizes and writes, e.g., 10 things as c

10 . In spite of his 
having schemes similar to those of the Trattato di alcibra amuchabile, Dardi's style is thus 
a good example of syncopation not pointing toward symbolic calculation. 
Seen under a different angle, his treatise agrees more thoroughly than most abbacus 
algebras with the idea that mathematics should be built on arguments. He gives 
geometric proofs, ultimately based on those of al-Khwārizmī but as different from these 
in details as if he had seen them once and then reconstructed them from memory; he 
certainly did not copy directly. He uses the rule of three to show how to divide by a 
binomial (3+√4 – Dardi also uses rational roots “as if they were surds”, and is indeed 
the one who uses this phrase; even he takes no advantage of the choice). Finally, he 
                                                            
19 In the mid-15th-century encyclopedias mentioned in note 11 we find a better system, drawing on formal fractions; they 
speak of “fraction denominated by censo” etc. 
20 Or almost so, cf. [Van Egmond 1983: 417]. One solution asks for a fifth and one for a seventh root. Having no adequate 
terminology Dardi replaces them by “cube root” and “root of root”, respectively, although he understands the embedding 
of root taking perfectly in other places. 
21 For instance, regarding a capital which grows in three years from 100 £ to 150 £, taking as thing not the value of the 
capital after one year but the rate of interest. 
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gives an intuitive proof of the sign rule “less times less makes plus”, based on the 
calculation (10–2)⋅(10–2) = 10⋅10–2⋅10–2⋅10+(–2)⋅(–2),22 arguing that it should be 64, 
which it is indeed if (–2)⋅(–2) is 4 but not if it is (–4) or 0. 
In the end we may take note that Dardi does not like the ambiguous expression “the 
censi” when he wants to refer to their coefficient; instead he speaks of “the quantity 
of censi”. This step toward terminological precision is likely to be his own invention; 
it had no perceptible impact. 
ALTERNATIVES TO THE FALSE RULES 
I have neither time (in my presentation) nor space (in writing) to discuss more 
treatises in detail. Instead I shall arrange the discussion according to select themes, 
beginning with the false rules. A manuscript from the outgoing 14th century [ed. 
Franci & Pancanti 1988: 98] speaks of the existence of particular roots beyond the 
square and cube roots, and explains one called “cube root with addition”. The “cube 
root of 44 with addition of 5” is told to be 4, because 43 = 44+5⋅4 – in general, the 
“cube root of n with addition α” is t if t3 = n+αt. This is one of the equations provided 
with a false solution by Gherardi; the inventor of this roo+t thus knew that Gherardi's 
solution was false, and wanted to do better. The author of the present manuscript is 
not impressed; he observes that this root mostly does not exist (as an integer). He 
points out, however, that the cases t3+βt2 = m, t3 = βt2+m and βt2 = t3+m can be 
reduced to the form t3 = n+αt and thus be solved by means of the same root – 
showing also that solutions may exist even if n is “a debt”, i.e., a negative number. 
The way he expresses the coefficients of the transformed equations shows that he 
went through exactly the same change of variable as we would. 
The manuscript does not identify the other particular roots, but one of them is 
probably the “pronic root” which we encounter in a number of sources. If t4+t = N, 
then some sources (e.g. Pacioli [1494: I, 115v] identify t2 as the pronic root, others 
[e.g. Pierpaolo Muscharello [ed. Chiarini et al 1972: 163]) state it to be t. Benedetto da 
Firenze [ed. Pieraccini 1983: 26] mentions it in 1463 in connection with the equation 
x2+√x = 18 but does not make it clear whether x or t = √x should be the pronic root. 
What he does make clear is that even this root served to “solve” irreducible equations. 
Pacioli [1494: I, 150r] states that so far only equations where the three powers 
involved are “equidistant” had been correctly solved. He may have known about the 
solution of other equations by means of these particular roots (he admits that certain 
other equations can be solved a tastoni, “by feeling one's way”), but if so he did not 
see them as genuine solutions. With hindsight we would say that he was right – but 
with the proviso that the transformations that go together with the “cube root with 
addition” were exactly those which permitted Cardano to solve cubic equations in 
general after having solved cases with no second-degree term. 
                                                            
22 “–2” is still to be understood as a subtractive, not a negative number. When repeating the same proof, Luca Pacioli 
[1494: I, 113r] instead thinks of genuine negative numbers. He finds them “absurd” but necessary – the quest for coherence 
had enforced expansion of the number concept. 
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NAMES FOR POWERS AND ROOTS 
The contradiction multiplication/embedding in the construction of names for powers 
and roots was eventually productive, but at first a cause for confusion. 
Changes in the terminology for roots set in first, perhaps because the problem was 
most obvious here. Dardi, as mentioned, understood the embedding of roots but 
stumbled on the ensuing lack of terminology for the fifth and seventh root. Our 
earliest evidence for the term radice relata, “related root” for the fifth root is Antonio 
de' Mazzinghi, a mathematically brilliant abbacus teacher who probably died rather 
young in 1385.23 Later, this became “first related root”, the “second related root” 
being 7√, the “third related root” being 11√, etc.24 Other roots were then named by 
embedding. As we see, the system is consistent, but quite unhandy. 
The earliest evidence for (ambivalent) naming of powers by embedding is in the 
manuscript which speaks of particular roots, and which starts by presenting the 
powers until the sixth, including products which remain within this limit [ed. Franci 
& Pancanti 1988: 3–5]. The author is aware that the powers are in continuous 
proportion and uses this in his arguments, but apart from that the explanation is 
confusing (but not necessarily confused) – perhaps because the author is moving on 
unfamiliar ground. The thing multiplied by it self is said to be 

a root which is called a censo, so that it is the same to say a censo as to say a quantity 
which has a root, born from a number multiplied by itself, so as it would be to say that if 
the thing produces 4 in number, the censo should produce the square of the thing, that is, 
what 4 multiplied by itself makes, that is that the value of the censo will be 16, so that, 
seen that 4 is the root of 16, it therefore comes that the thing is said to be the root of the 
censo, so that it is as much to say censo as root of number. 

The mixing-up of having and being a root goes through the whole discussion, but the 
consistently correct numerical examples suggest that the confusion is merely or 
principally in the words, not in the underlying thinking.25 The product of a thing and a 
censo is called a cube (and “a cubic root of a given number”), the product of a thing 
and a cube is a “censo of censo, which is to say the root of the root of a given 
quantity”; the explanation of the numerical example suggests that the name is 
understood through embedding. Thing times censo of censo is said to be 

 cube of censi, which is as saying a root born from a square quantity multiplied by a cube 
quantity [...]; and some call this root related root. So that it would be the same to say cube 
of censo as related root of a given quantity. 

                                                            
23 [Ulivi 1996: 109–115]. We know his writings through extracts in the encyclopedic works referred to in note 12. 
24 This terminology, though used for a particular purpose, is in [Pacioli 1494]; cf. presently. 
25 The underlying idea may be that since a thing is also called a root, the higher powers must also be “roots” of some 
kind. If this explanation is correct, we may understand “cubic root of a given number” (etc.) as “cubic «root» on a given 
number”. 
Jean Peletier [1554: 5], somehow knowing the usage, explains it by speaking of the powers as “nombres radicaux, that 
is, which have in themselves some root to extract”. 
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Here, the thinking is obviously multiplicative. The next step, however, goes by 
embedding: a thing times a cube of censo is 

 a censo of cube, which means as much as saying, taken the root of a quantity, and of 
this quantity taken its cube root, so that if the thing is 3, the censo will be 9, the cube will 
be 27, the censo of censo will be 81, the cube of censo will be 243, the censo of cube will 
be 729, because taken the root of 729 will make 27, whose cube root is 3 and equal to the 
value of the thing. 

Then products of powers are discussed – and unfortunately it is said in the end that cube 
times cube is “cube of cube, that is cube root of cube root”. 
What looks like a further development of this system is described twice by Pacioli 
[1494: I, 67v, 143r–v]. In the interest of completeness (i.e., describing a system he has not 
invented and does not use) he gives in parallel the habitual sequence of names (now 
based on embedding) and the “root names”, which are now completely arithmetized. 
The former are 

number – thing – censo – cube – censo of censo – first related – censo of cube and 
also cube of censo – second related – censo of censo of censo – cube of cube – ..., 

ending with the 29th power, the ninth related. The corresponding root names are 1st 
root, 2nd root, ... 30th root. Since thingn–1 is the nth root, this arithmetization, while 
adequate for seeing which terms (in Pacioli's expression) are “equidistant” and thus 
for reducing equations, e.g., of the type x2+p+αx1+p = βx1+p, they are less useful for 
seeing for instance that the type x2p+αxp = β is of the second degree in xp.26 
A more adequate arithmetization came from the abbreviated writing of equations, 
mostly occurring in the margins of manuscripts – for instance Vatican, Vat. lat. 3129, 
written by Pacioli in 1478. Here, abbreviations for powers (co for cosa,  alternating 
with cen for censo) are written above or as superscript following the coefficient.27 
This graphic distinction allowed first Chuquet (in 1484 [ed. Marre 1880: 632 and 
passim]) and later Bombelli [1572] to replace the abbreviation by the number of the 
power28 – Bombelli with an arc below29 to further emphasize the graphic 
distinction.30 Both use the numbers we regard as exponents.31 

                                                            
26 When needing on Fol. 182r the sequence of genuine roots in problems about composite interest (and not reporting 
what he had found in circulation), Pacioli still uses the multiplicative system for everything except 5√ – in order, “ℜ” 
(√), “cube ℜ” (3√), “ℜℜ” (4√), “related ℜ” (5√), “cube ℜ of cube ℜ” (6√), “ℜℜ of cube ℜ” (7√), “ℜ of cube ℜ of cube ℜ” 
(8√), etc. One wonders how deep his understanding was. 
27 Even this vertical organization goes back to Maghreb algebra – see, e.g., [Cajori 1928: I, 93f] and [Djebbar 2005: 92]. 
28 Chuquet's sense of system also lets him designate n√ as ℜ.n (even when n = 2). 
29 In the manuscript, the exponent is above the coefficient and the arc separates the two – facsimile in [Bombelli 1966: 
xxxiii]. 
30 Tartaglia [1560: 2r] has a table similar to that of Pacioli but with numbering of the dignitates/“powers” coinciding 
with our exponents. He uses the same traditional names (composed with embedding) as Pacioli. However, he is 
preceded by Stifel [1544: 235r–237r closely followed by Peletier [1554: 8–11], who speak of the numbers as 
exponentes/exposans. 
31 Eventually, when combined with Viète's use of letters, this led to the modern notation of variable with exponents. 
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SCHEMES 
The use of abbreviations for frequently recurrent words or endings was common in 
manuscripts from the period. The abbreviation of cosa, censo, radice etc. thus 
adopted a tool which already existed.32 So do the schemes for multiplication of 
binomials which we encountered in the Trattato dell'alcibra amuchabile and in Dardi 
(which borrow the cross indicating how to multiply mixed numbers) as well as the 
formal fractions with algebraic expressions in the denominator. 
A final development exemplifying the principle of algebraic wine in non-algebraic 
bottles is the emergence of algebraic calculation within schemes. The manuscript 
Vatican, Ottobon. lat. 3307, Fol. 331r (c. 1465) contains a problem 71

100
1
100

+ + ρρ  = 40 
(the formal fractions, without + and =, are already in the text; ρ is used for thing). The 
solution makes use of the transformation )71()1(

)7100100
+  

+ (  + 
ρρ

ρρ
⋅

⋅  = ρσ
ρρ

71
)700100(100

 + 
+ +  = 40, whence 

200ρ+700 = 40σ+280ρ (σ is used for censo). In the margin, the solution is 
summarized as follows: 
       100ρ 
       100ρ  700 
       200ρ  700 
           1σ   7ρ        40 
       200ρ   700 ———  40σ 〈280ρ〉 
 
(“280ρ” has been forgotten but stands in the text). This emulates the way non-
algebraic items can be added, combined with the fraction notation. The stroke -, 
seemingly an equation sign, is also used more broadly for confrontations – thus 
confronting (fol. 338r) the contributions of two business partners. Since 
Regiomontanus [ed. Curtze 1902: 278] uses exactly the same scheme, it is likely to 
represent a common procedure. 
In the late 14th-century manuscript introducing the cube root with extension we find 
not only the abbreviations ℜ (radice), p (più/“plus”), m (meno/“less”), ρ (cosa) and 
c (censo) and Dardi's diagram for the multiplication of binomials but also [ed. 
Franci & Pancanti 1988: 11] a scheme for multiplying longer polynomials which 
follows the principles of number multiplication a chaselle with vertical columns. 
Similar schemes are not only found in quite a few later abbacus algebras; they also 
came to play an important role in Stifel's Arithmetica integra [1544: Fol. 123–125 
und passim], in Scheubel's Algebrae compendiosa facilísque descriptio [1551: 3vff], 
in Peletier's L'algebre [1554: 15–22] and in Ramus's Algebra [1560: A iiir]. 
                                                            
32 As non-algebraic abbreviations, those for cosa and censo were rarely used systematically (Dardi being an exception). 
Only radice was used almost consistently in certain manuscripts. 
The use of abbreviations may have received inspiration from Maghreb algebra. Here, however, single-letter 
abbreviations were employed, inside a fully consistent notation. If inspired, the Italian writers understood the Maghreb 
abbreviations within the framework of their own habits. 
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THE EFFECT OF A CHANGE OF AIR 
Fraud and experiments with not immediately reducible higher-degree equations, not too 
consistent use of abbreviations, and schemes for the calculation with polynomials – this 
is more or less as far as Italian abbacus algebra went before 1500. Only on the first, 
somewhat dubious account did it go beyond developments that had already taken place 
in the Maghreb well before 1250 – developments which some abbacus authors had 
probably known about directly or indirectly, but which the abbacus environment had to 
digest before it could make them their own 
The experiments with higher-degree equations led to a general breakthrough due to del 
Ferro, Tartaglia, Cardano and Ferrari in the years 1515–1545. The use of abbreviations 
and schemes also took root for good in the sixteenth century – beginning however in 
Germany already in the 15th century,33 well before it happened in the Italian environment, 
and also soon to be seen in French writings. In consequence, writings on algebra already 
look very different from 15th-century Italian predecessors well before Viète. 
We may ask why. Book printing per se is hardly the explanation – in the manuscript 
version of Bombelli's L'algebra34, the symbolism for powers and parentheses is 
different from what we find in the printed edition from [1572], and actually more 
transparent. Neither is the mere migration to new territories likely to explain much, 
since the new trends can also be seen in Italy. We may notice, however, that the 
innovations go together with integration of the abbacus environment with environments 
more oriented toward university learning – del Ferro was a University professor, 
Cardano a most learned physician, German algebra was expressed in Latin already in 
the 15th century.35 Already Chuquet, in many respects (an unsuccessful) precursor of 
16th-century developments, was actually a university scholar, having completed the 
degrees of the arts as well as medicine in Paris. The Italian abbacus 14th and 15th-
century abbacus environment, though governed by norms of precision and coherence at 
the levels where every abbacus master and any good student could understand what 
went on [Høyrup 2007b], lacked a social mechanism which could impose intellectual 
progress on everyone once it had been made (vide the survival of the fraudulent rules 
and Giovanni's nonsensical divisions for more than 200 years). Such mechanisms were 
not perfect in the 16th century (nor today), but much stronger than in the free-market 
teaching in Italy in the 14th and 15th centuries. Once Stifel had published his 
Arithmetica integra in [1544], it was obvious to both Peletier (who cites him) and 
Ramus (who pretends never to have heard about him in [1560] as well as [1569]) to 
draw on the inspiration he offered. Here, of course, printing was important: it was much 
easier to have access to the good model; who like Fernandes [Silva 2006] took his 
inspiration from the manuscripts he could get hold of depended on good or bad luck. 
                                                            
33 The earliest evidence for fully systematic use of standard abbreviations may be the appendix to Robert of Chester's 
translation of al-Khwārizmī's Algebra [ed. Hughes 1989: 67]. Schemes come later, for instance in Christoff Rudolff's 
Coss [1525]. 
34 A facsimile of a representative page is in [Bombelli 1966: xxxiii]. 
35 See [Folkert 2006: XII]. In [Høyrup, forthcoming] I argue that the role Folkerts ascribes to Regiomontanus is 
overstated – Regiomontanus turns out to be very close to Italian models and no more systematic than these. 
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The 16th-century maturation and stabilization of formal fractions, names for powers 
and roots organized with embedding (or arithmetized), abbreviations for operations 
used every time and not just now and then, and schemes – all developments starting 
in the 14th and 15th century on the basis of existing non-algebraic writing – made 
possible that freer development of the algebraic language which set in with Viète and 
Descartes, and in the end reduced the schemes – for a while the most advanced 
expression of the autonomy of algebra from spoken language – to algorithmic aids or 
eliminated them altogether from the algebra textbooks. 
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